Joint Uncertainty Decoding for Noise Robust Subspace Gaussian Mixture Models
نویسندگان
چکیده
منابع مشابه
Joint uncertainty decoding with unscented transform for noise robust subspace Gaussian mixture models
Common noise compensation techniques use vector Taylor series (VTS) to approximate the mismatch function. Recent work shows that the approximation accuracy may be improved by sampling. One such sampling technique is the unscented transform (UT), which draws samples deterministically from clean speech and noise model to derive the noise corrupted speech parameters. This paper applies UT to noise...
متن کاملNoise Compensation for Subspace Gaussian Mixture Models
Joint uncertainty decoding (JUD) is an effective model-based noise compensation technique for conventional Gaussian mixture model (GMM) based speech recognition systems. In this paper, we apply JUD to subspace Gaussian mixture model (SGMM) based acoustic models. The total number of Gaussians in the SGMM acoustic model is usually much larger than for conventional GMMs, which limits the applicati...
متن کاملNoise Compensation for Speech Recognition Using Subspace Gaussian Mixture Models
In this paper, we adress the problem of additive noise which degrades substantially the performances of speech recognition system. We propose a cepstral denoising based on the Subspace Gaussian Mixture Models paradigm (SGMM). The acoustic space is modeled by using a UBM-GMM. Each phoneme is modeled by a GMM derived from the UBM. The concatenation of the means of a given GMM leads to a very high...
متن کاملNoise adaptive training for subspace Gaussian mixture models
Noise adaptive training (NAT) is an effective approach to normalise environmental distortions when training a speech recogniser on noise-corrupted speech. This paper investigates the model-based NAT scheme using joint uncertainty decoding (JUD) for subspace Gaussian mixture models (SGMMs). A typical SGMM acoustic model has much larger number of surface Gaussian components, which makes it comput...
متن کاملJoint uncertainty decoding for noise robust speech recognition
Background noise can have a significant impact on the performance of speech recognition systems. A range of fast featurespace and model-based schemes have been investigated to increase robustness. Model-based approaches typically achieve lower error rates, but at an increased computational load compared to feature-based approaches. Thismakes their use inmany situations impractical. The uncertai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Audio, Speech, and Language Processing
سال: 2013
ISSN: 1558-7916,1558-7924
DOI: 10.1109/tasl.2013.2248718